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ABSTRACT
Aim  To explore and evaluate an appropriate deep 
learning system (DLS) for the detection of 12 major 
fundus diseases using colour fundus photography.
Methods  Diagnostic performance of a DLS was 
tested on the detection of normal fundus and 12 major 
fundus diseases including referable diabetic retinopathy, 
pathologic myopic retinal degeneration, retinal vein 
occlusion, retinitis pigmentosa, retinal detachment, wet 
and dry age-related macular degeneration, epiretinal 
membrane, macula hole, possible glaucomatous optic 
neuropathy, papilledema and optic nerve atrophy. The 
DLS was developed with 56 738 images and tested with 
8176 images from one internal test set and two external 
test sets. The comparison with human doctors was also 
conducted.
Results  The area under the receiver operating 
characteristic curves of the DLS on the internal test set 
and the two external test sets were 0.950 (95% CI 
0.942 to 0.957) to 0.996 (95% CI 0.994 to 0.998), 
0.931 (95% CI 0.923 to 0.939) to 1.000 (95% CI 0.999 
to 1.000) and 0.934 (95% CI 0.929 to 0.938) to 1.000 
(95% CI 0.999 to 1.000), with sensitivities of 80.4% 
(95% CI 79.1% to 81.6%) to 97.3% (95% CI 96.7% 
to 97.8%), 64.6% (95% CI 63.0% to 66.1%) to 100% 
(95% CI 100% to 100%) and 68.0% (95% CI 67.1% to 
68.9%) to 100% (95% CI 100% to 100%), respectively, 
and specificities of 89.7% (95% CI 88.8% to 90.7%) 
to 98.1% (95%CI 97.7% to 98.6%), 78.7% (95% CI 
77.4% to 80.0%) to 99.6% (95% CI 99.4% to 99.8%) 
and 88.1% (95% CI 87.4% to 88.7%) to 98.7% (95% 
CI 98.5% to 99.0%), respectively. When compared with 
human doctors, the DLS obtained a higher diagnostic 
sensitivity but lower specificity.
Conclusion  The proposed DLS is effective in diagnosing 
normal fundus and 12 major fundus diseases, and thus 
has much potential for fundus diseases screening in the 
real world.

INTRODUCTION
Colour fundus photography (CFP) plays an 
important role in detecting prevalent vision-
threatening fundus diseases such as diabetic reti-
nopathy (DR), retinal vein occlusion (RVO), 
age-related macular degeneration (AMD) and 
glaucoma. According to recent epidemiological 
studies, approximately 79.6 million people world-
wide will have glaucoma by 2020,1 while the 

number of people with AMD is expected to reach 
around 200 million.2 The prevalence of diabetes 
around the world will reach 592 million people by 
2035,3 with one-third affected by DR.4 5 However, 
medical services are extremely limited worldwide. 
For example, in mainland China, the ophthalmic 
human resource at the country level was only 0.14 
per thousand people according to a survey in 2014.6 
This serious situation imposed a substantial burden 
on the large-scale screening of multiple fundus 
diseases for early detection.

Deep learning system (DLS)-based diagnosing and 
grading in ophthalmology has progressed rapidly 
in many conditions, including cataracts,7 8 DR,9–11 
glaucoma,12 retinopathy of prematurity (ROP),13 14 
AMD15 16 and macular telangiectasia type 2.17 18 
However, current studies mostly focus on one or 
only a few (less than five) diseases.19 20 To the best 
of our knowledge, there are still lack of efficient 
DL models for multiple disease (especially more 
than 10) recognition using CFPs. We attribute 
this absence to two factors: the difficulties of 
establishing a large-scale multidisease data set for 
training and validation and the technical challenges 
of developing a DLS suited not only for separating 
abnormal and normal CFPs but also for distin-
guishing one disease from many others.

Recently, Son et al21 proposed a DLS for the 
detection of 12 major fundus abnormalities using 
12 binary classification models, which could 
help greatly on the detection of retinal lesions. 
However, for disease recognition, it still needs 
professional interpretation, which may bring 
obstacles for screening and AI-assisted diagnosis 
if there is no trained ophthalmologists available. 
Also, the application of a panel of binary classi-
fication models will take much more time and 
computer resources than a single multiclassifica-
tion model. This paper aims to develop an auto-
mated screening DLS for multiple major fundus 
diseases, which could be of great significance for 
clinical practice in future.

METHODS
The current study complied with the Declara-
tion of Helsinki and was approved by the Ethics 
committee of Peking Union Medical College 
Hospital (Number S-K631). The review board 
waived the need to obtain informed patient consent 
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because of the retrospective study design and the use of fully 
anonymised CFPs.

Image acquisition and data sets
The selection of diseases was decided according to their prev-
alence and morbidity, also taking into account their clinical 
potential for screening using CFPs. Hence, in addition to normal 
fundus images, we selected 12 major fundus diseases including 
nine retina diseases: referable DR, pathologic myopic (PM) 
retinal degeneration, RVO, retinitis pigmentosa (RP), retinal 
detachment (RD), wet and dry AMD, epiretinal membrane 
(ERM) and macula hole (MH) and three optic nerve disorders: 
possible glaucomatous optic neuropathy (GON), papilledema 
and optic nerve atrophy. The imaging diagnosis was made on 
standard diagnostic criteria (online supplemental eTable1). 
Although dry and wet AMD can be considered as the same 
disease of different stages,22 we still classified them into two 
categories considering their potential difference on treatments 
and prognoses.

Since there were no publicly available data sets for the detec-
tion of multiple fundus diseases, we acquired and annotated a 
data set for the development and internal test of the DLS. To test 
the generalisability of the model, we also collected CFPs from 
an independent tertiary medical centre forming the external test 
set A and three primary hospitals forming the external test set B.

Development set
A total of 56 738 CFPs taken between January 2014 and 
December 2018 were collected from three participating centres 
(Henan Provincial Peoples’ Hospital, Zhengzhou, Henan, Beijing 
Tongren Hospital, Beijing and Beijing Aier Intech Eye Hospital, 
Beijing). These images formed the development data set for the 
models’ training and validation.

Test sets
Another 8176 CFPs were collected for the DLS testing. Among 
them, 3579 were from the same source of the development set 
and ensured that the sample size of each disease reached over 
100, forming the internal test set. Another 1245 CFPs from 
757 patients were collected from another independent tertiary 
medical centre (Peking Union Medical College Hospital) from 
1 January 2019 to 30 June 2019, as the external test set A. The 

last 3352 CFPs from 2558 patients were collected from three 
primary hospitals from 4 July 2017 to 14 September 2020, as 
the external test set B.

For each patient enrolled, only one image of each eye could 
be included. The detailed inclusion and exclusion criteria are 
provided in the online material (online supplemental file).

After preprocessing and desensitisation, the development data 
set was separated into a training set and a validation set with the 
ratio of 4:1, according to the patients’ number, which means that 
the bilateral CFPs of the same patient were assigned together 
to either the training set or validation set. This process was 
organised randomly. The three test sets were maintained inde-
pendently to test the performance and generalisation of the DLS.

Online annotation was carried out to label the images as 
normal fundus or the 12 selected diseases. A total of 17 senior 
board-certified ophthalmologists (with 5–12 years of experi-
ence) were randomly assigned for image annotation. Thirteen 
of them were assigned to label the development data set and 
internal test set. The other four doctors were assigned to label 
the external test sets. Images in the test sets were labelled three 
times by different ophthalmologists to obtain high reliability. 
Consistent labels by all three doctors were retained. If the label 
was only agreed by two doctors, then the final decision would be 
made by a fourth, more senior ophthalmologists (with over 10 
years of experience). Images with no consistent labels or those 
annotated with poor quality, such as loss of focus, misalignment, 
excessive brightness or dimness, were excluded.

Development of evaluation of the DLS
The DLS was designed using the convolutional neural network 
(CNN) of SeResNext5023 network as a multilabel model selected 
from four-candidate CNNs with two parallel branches at the fully 
connected layer, one for the distinguish of normal and abnor-
malities and the other for the recognition of diseases it predicted 
to have, which could be more than one kind of diseases, simul-
taneously. The details are available in online materials (online 
supplemental eFigure1).

The performance of the DLS was evaluated on the three test 
sets. We used the area under the receiver operating characteristic 
(ROC) curve (AUC), sensitivity and specificity for assessments. 
The metrics were calculated for each label instead of each image, 
since one image could be annotated with more than one label. 

Table 1  The sample size of normal fundus and 12 fundus diseases in the five datasets

Label

Development set Test sets

Training set
N=46 501

Validation set
N=10 237

Intern test set
N=3 579

External test set A
N=1 245

External test set B
N=3 352

Normal fundus 19146 (41.2) 4315 (9.3) 1053 (29.4) 441 (12.3) 1804 (50.4)

Retinal vein occlusion 3528 (7.6) 967 (2.1) 531 (14.8) 54 (1.5) 123 (3.4)

Referable diabetic retinopathy 2701 (5.8) 642 (1.4) 285 (8.0) 292 (8.2) 388 (10.8)

Pathological myopic retinal degeneration 8243 (17.7) 989 (2.1) 192 (5.4) 84 (2.3) 113 (3.2)

Retinitis pigmentosa 587 (1.3) 137 (0.3) 130 (3.6) 62 (1.7) 38 (1.1)

Retinal detachment 315 (0.7) 88 (0.2) 110 (3.1) 5 (0.1) 14 (0.4)

Epiretinal membrane 2403 (5.2) 544 (1.2) 268 (7.5) 36 (1.0) 165 (4.6)

Dry age-related macular degeneration 2669 (5.7) 808 (1.7) 267 (7.5) 86 (2.4) 404 (11.3)

Wet age-related macular degeneration 1564 (3.4) 433 (0.9) 146 (4.1) 67 (1.9) 75 (2.1)

Macular hole 266 (0.6) 59 (0.1) 137 (3.8) 1 (0.0) 14 (0.4)

Possible glaucomatous optic neuropathy 3648 (7.8) 544 (1.2) 270 (7.5) 79 (2.2) 227 (6.3)

Papilledema 2882 (6.2) 682 (1.5) 228 (6.4) 78 (2.2) 82 (2.3)

Optic nerve atrophy 1459 (3.1) 462 (1.0) 202 (5.6) 23 (0.6) 150 (4.2)

The results are presented with: number (%).
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Information learnt in our automated method was visualised for 
further clinical review using Class Activation Map (CAM)24 
which is a CNN’s visualisation technique that can identify the 
importance of the image regions by projecting back the weights 
of the classification layer on the convolutional feature maps 
obtained from the last convolution layer.

Comparison of the DLS with human doctors
To assess whether the DLS has reached a comparable diagnostic 
performance with human doctors, four ophthalmic residents 
were tested using the external test set B. Each of them was 
assigned randomly with one quarter samples of the whole set 
and annotated online and then compared the performance with 
DLS, which annotated the same images.

All statistical analyses, including ROC curves, were carried out 
using the programming language Python (V.2.7; Python Soft-
ware Foundation; Wilmington, Delaware, USA). The results of 
the indicators are presented as values with 95% CIs.

RESULTS
A total of 64 914 CFPs were enrolled in this study with the field 
of 35–55 degrees of the posterior pole covering the whole area 
of macula and the optic disc. The DLS was trained and validated 
using 46 501 and 10 237 images, respectively, and evaluated on 
the three test sets with 3 579 images (2 635 patients with a mean 
age (±SD) of 55.4±18.3 ranging from 2 to 96), 1 245 images 
(757 patients with a mean age (±SD) of 48.7±18.0 ranging 
from 4 to 89) and 3 352 images (2 558 patients with a mean age 
(±SD) of 52.6±20.6 ranging from 3 to 97), respectively. The 
numbers of images in each category of the internal test set were 
all over 100, which ensured the reliability of the test results. The 
two external test sets represented a real clinical scenario and the 
disease distribution of both tertiary medical centre and primary 
hospitals in China over a certain period of time (table 1). CFPs 
with more than one label in the training, validation internal test 
set, external test sets A and B were 3 202 (6.9%), 488 (4.8%), 
334 (9.3%), 70 (5.6%) and 217 (6.5%), respectively.

The model performance on the test sets
We developed a late-fusion multilabel model as well as 12 binary 
classification models for comparison, and the former achieved a 
higher mean average precision on validation set with statistical 
significance (p=0.020) (online supplemental eTables 2 and 3). 
The ROC curves were also listed online (online supplemental 
eFigure 2 and 3). We, therefore, selected the late-fusion multi-
label model for testing. The threshold of the model on validation 
set was listed in online materiel (online supplemental eTable 4). 
The AUCs in the internal test set and the two external test sets 
were 0.950 (95% CI 0.942 to 0.957) to 0.996 (95% CI 0.994 to 
0.998), 0.931 (95% CI 0.923 to 0.939) to 1.000 (95% CI 0.999 
to 1.000) and 0.934 (95% CI 0.929 to 0.938) to 1.000 (95% 
CI 0.999 to 1.000), with corresponding sensitivities of 80.4% 
(95% CI 79.1% to 81.6%) to 97.3% (95% CI 96.7% to 97.8%), 
64.6% (95% CI 63.0% to 66.1%) to 100% (95% CI 100% to 
100%) and 68.0% (95% CI 67.1% to 68.9%) to 100% (95% 
CI 100% to 100%), and corresponding specificities of 89.7% 
(95% CI 88.8% to 90.7%) to 98.1% (95% CI 97.7% to 98.6%), 
78.7% (95% CI 77.4% to 80.0%) to 99.6% (95% CI 99.4% to 
99.8%) and 88.1% (95% CI 87.4% to 88.7%) to 98.7% (95% CI 
98.5% to 99.0%), respectively. For the major blindness leading 
diseases, the AUCs of referable DR, possible GON, dry and wet 
form AMD in the external test sets were 0.965 (95% CI 0.960 to 
0.971) to 0.986 (95% CI 0.984 to 0.988), 0.931 (95% CI 0.923 Ta
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to 0.939) to 0.946 (95% CI 0.942 to 0.950) and 0.968 (95% CI 
0.964 to 0.971) to 0.988 (95% CI 0.986 to 0.990), respectively. 
Table 2 shows the results of the AUC, sensitivity and specificity, 
of the DLS tested on the three test sets. The ROC curves of the 
DLS tested in the internal set were as figure 1 shows. Other ROC 
results tested in the external sets are listed in the online material 
(online supplemental eFigure 4 and 5).

To further understand the model’s performance, we used 
heat maps for visualisation and clinical review. Figure 2 shows 
heat maps of the true-positive reports of normal fundus and 
12 fundus diseases on the external test sets. Different colours 
mark subregions with different degrees of activation of the DLS, 
which increase progressively from blue to red as indicated by the 
colour bar. The heat maps indicate that the features extracted 
by the model generally present a high consistency with human 
doctors’ diagnostic basis in real clinical work according to the 
specific lesions on CFPs. Some false-positive and false-negative 
cases indicated that the DLS seemed to miss some fine abnor-
malities like the change of the disc rim, optic disc pit in possible 
GON or small MH (figure 3).

We also noticed that the model achieved a relatively lower 
sensitivity on the detection of possible GON. To further inter-
pret and prove the model’s performance, we compared our 
DLS with some other specialised GON detecting models using 
public available data set. The test was performed on Retinal 
Fundus Glaucoma Challenge, REFUGE (https://​refuge.​grand-​
challenge.​org) test set, which contains 400 fundus images 
with 360 normal fundus and 40 glaucoma. We achieved 0.955 
AUC and 0.931 reference sensitivity, which rank six and four 
among all the 12 participating team, that is comparable to the 
state-of-the-art models (reference sensitivity: 0.725 to 0.976, 
AUC: 0.846 to 0.989).25 The detailed comparison results were 
available in online materiel (online supplemental eTable 5 and 
eFigure 4).

The comparison between human doctors and the DLS model
The mean sensitivity and specificity of the four human doctors 
were 69.5%, 75.7%, 74.0% and 71.1%, and 98.1%, 97.8%, 
97.8% and 97.6%, respectively. The corresponding DLS 
model’s sensitivity and specificity were 90.2%, 86.8%, 84.0% 
and 82.4%, and 97.6%, 92.6%, 93.7% and 93.6%, respectively. 
Statistical analysis (Mann-Whitney U test) showed that the DLS 
achieves significant higher sensitivity comparing with two of 
the four doctors and lower specificity comparing with all four 
doctors. Detailed results are available in online materials (online 
supplemental eTable 6).

DISCUSSIONS
DL models for the detection of multiple fundus diseases
Previous studies have reported a large number of DLSs used for 
multiclassification, such as the detection of several diseases or 
severity of DR and AMD using CFPs or optical coherence topog-
raphy.9 16 26 There have also been studies focused on the detection 
of multiple fundus lesions recently.21 The detection of certain 
fundus diseases using DLS exceeding 10 categories remains very 
rare. Choi et al27 described automated differentiation between 
normal fundus and nine retinal diseases but achieved an accuracy 
of only 36.7% for all 10 classes. Comparing with their study, 
our work was carried out using a large data set with over 60 000 
images acquired from real clinical patients. The DLS developed 
by Son et al21 proposed a deep learning method for detecting 
multiple lesion-level abnormalities in colour fundus images. 
The strength to their study is that the detected lesions provide 
a more intuitive interpretation than holistic predictions as made 
by the prior art. However, as there lacks a one-to-one correspon-
dence between lesions and fundus diseases, a gap naturally exists 
when converting lesion-level findings to diseases, which is left 
untouched by Son et al in this work, we take a orthogonal direc-
tion, making a novel attempt to directly recognise 12 fundus 

Figure 1  The receiver operating characteristic curves of the deep learning system tested in the internal test set.
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diseases from a given colour fundus image. Moreover, we adopt 
the CAM technique to visualise which part of the given image is 
responsible for the final prediction.

Furthermore, the diseases selected in this study mostly comprise 
leading causes of blindness that need early detection and inter-
vention covering a broad spectrum including retinal vascular 
diseases (RVO, referable DR), retinal degeneration diseases (PM 
retinal degeneration, RP, RD), macular disease (ERM, AMD and 
MH) and optic nerve disorders (possible GON, papilledema and 
optic nerve atrophy). Most of them have rarely been reported in 
previous studies.

Development and selection of the models
The models developed for multidisease detection were diverse in 
previous studies. The scenario targeted most often by machine 
learning methods for applications in ophthalmology is image 
classification,28 which is typically used in retinal analysis for 
automatic screening. Multiclass classification is used28 to detect 

the type of disease present or to accurately determine the stage 
of disease. This has been done for DR10 11 and ROP.29 30 In the 
case of multiclass classification, images belong to only one of the 
mutually exclusive categories. Choi et al27 reported a multidis-
ease recognition model that applied a method of classification to 
classify fundus images into different categories of retinal diseases 
for diagnosis. The authors attributed part of the dissatisfactory 
performance of the model to decreased expected accuracy as the 
number of categories multiplied, which has been demonstrated 
in previous studies.31 However, mutually exclusive multiclassifi-
cation model may not be unsuitable for multiple disease recog-
nition since some fundus diseases may coexist. For example, 
patients could have DR and ERM simultaneously,32 and the 
incidence rate of open-angle glaucoma in patients with RVO is 
significantly higher than that in the general population.33 Our 
multilabel model was developed with the modified feature layer 
of SeResNext50 in order to simultaneously classify abnormal 
versus normal CFP images and to accurately detect the presence 

Figure 2  CFPs and visualisation heat maps of true-positive cases on the internal test set. The colour bar mark subregions with different active 
intensities of the model, which increase progressively from the blue end to the red end. These heat maps represent the ability of our method to 
objectively distinguish different diseases. CFP, colour fundus photography.
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of multiple diseases. We combined the two steps into a single 
model to simplify implementation in future clinical practice.

The data sets and the model’s performance
Our model was trained and tested in real clinical data sets, 
and this was an important feature of the study, mimicking real 
screening scenarios as closely as possible at this early stage of 
development. To assure the accuracy, diversity and reliability of 
the data sets, we used CFPs from real-life data sets from three 
different clinical centres that were annotated by 17 experienced 
ophthalmologists. The amount of work involved in annotating 
the images was formidable, and this data set was much larger 
than in previous studies on multidisease classification with only 
279 images.27 To our knowledge, this is also the largest multidis-
ease recognition data set thus far.

Considering the future application scenarios of the model is 
screening especially in lower level medical places, which may be 
accompanied with more complex conditions and interferences 
while screening, we provided two external test sets from tertiary 
medical centre and primary hospitals, respectively. The results 
showed that the disease distribution was different from that 
of tertiary hospital. For example, the proportion of dry AMD 
and possible GON was much higher. Even so, the results still 
supported, that the DLS could do well in both scenarios, which 
proved the possibility of large-scale screening in the future work.

Notice that for glaucoma detection, the sensitivity of our 
DLS varies, which is 0.913, 0.797 and 0.646 on REFUGE, the 
external test set B and the external test set A, respectively. We 
attribute this variation to the distinct sources of the three test 
sets. REFUGE, as a public benchmark data set, tends to include 
images of less ambiguity to ensure the reliability of its ground 
truth. Indeed, we observed that images from this data set are 
typical with respect to glaucoma. Recall that the external test 
sets B and A were collected from primary hospitals and tertiary 
hospitals, respectively. Given the common practice of a referral 

medical system, where cases that are less typical and thus more 
difficult to diagnose are to be referred from a primary hospital to 
a tertiary hospital, it is fair to claim that images from A were the 
most challenging. The increasing difficulty in glaucoma diagnosis 
from REFUGE to the test set B and to the test set A explains the 
decreasing sensitivity of the DLS to detect this condition.

The interpretation of the heat maps
The ‘black box’ problem of DLS has greatly limited its appli-
cation and acceptance in real clinical practice. In this study, we 
used heat maps for visualisation. As the heat maps indicated, the 
features extracted by the model for prediction are very similar 
to human doctors’ considerations. Taking referable DR as an 
example (figure 2B), the model precisely extracted the appro-
priate retinal lesions (intraretinal and preretinal haemorrhages) 
and provided a correct prediction. The heatmaps are also helpful 
on understanding the false results. For example, the heatmap 
indicated that in false-negative case of possible GON (figure 3 
A2), the model paid almost no attention on the optic disc and 
failed to give the correct answer. The DLS model presented a 
limited performance on the detection of specific diseases like 
possible GON. To further interpret the results, we tested the 
model in a public available REFUGE dataset and proved that 
our DLS model presented a comparable performance with some 
of the other specialised GON detecting models. We attribute this 
variation to the distinct source of the test sets. REFUGE as a 
public benchmark dataset tends to include images of less ambi-
guity to ensure the reliability of its ground truth. Indeed, we 
observed that images from this dataset are typical with respect to 
glaucoma. Recall that the external test set A and B were collected 
from primary hospitals and tertiary hospitals respectively. Given 
the common practice of a referal medical system, whare cases 
that are less typical and thus more difficult to diagnose are to be 
referred from a primary hopital to a tertiary hospital, it is fair to 
claim that images from A were the most challenging.

Figure 3  The fundus image and corresponding heat maps of some cases of false positive and false negative results predicted by the DLS in the 
validation set. A1 and A2 are false negative cases: the DLS miss diagnosed referable diabetic retinopathy (A1) and possible GON (A2) to normal 
fundus; B1 and B2 are false positive cases: the DLS miss diagnosed macular hole to wet age-related macular degeneration. AMD,age-related macular 
degeneration; DLS, deep learning system; GON, glaucomatousoptic neuropathy.
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Limitations and future works
Our work has some limitations. First, while we have spent much 
efforts to expand our external test sets, the testing sample sizes 
for MH and RD, which are 19 and 15 in total, remain relatively 
small, as compared with the other conditions. To improve the 
reliability of the detection performance of the two diseases, more 
test samples need to be collected for future exploration. Second, 
the external evaluation on a clinical data set collected from 
tertiary hospitals (external test set A) shows that our DLS detects 
glaucoma with a relatively lower sensitivity of 0.646. Given that 
glaucoma is a major blinding disease, much work remains to be 
done for real-world deployment. Third, some diseases included 
in this study initiate from the peripheral retinal area such as 
RP and RD, but most of the images we used for analysis were 
centred by the macula fovea with the maximal field of 55 degree. 
Therefore, the detection of these diseases may be limited. With 
the future common use of ultrawide fundus camera, DLS model 
for this kind of CFP is of high research value. Finally, future 
prospective trials are needed to assess the DLS in multiple inde-
pendent real clinical scenarios.

CONCLUSION
The proposed DLS showed well performance on the three test 
sets for the detection of normal fundus as well as 12 major 
fundus diseases. The application of this model may alleviate the 
workloads of trained specialists and provide an efficient, low-
cost approach for preliminary screening in places with scarce 
medical resources and ophthalmologists. Further acquisition of 
data to broaden the extent of screening for more fundus diseases 
will be the next step of our work.
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1. The inclusion and exclusion criteria of the datasets 

 The inclusion criterion of the development dataset and internal test set included: ①the initial 

diagnosis were normal fundus and 12 selected fundus diseases with a standard diagnostic 

criteria (eTable1); ②for each patient, bilateral fundus images could be enrolled but only one 

for each eye; ③the CFPs should be posterior fundus photograph centralized by the macular 

fovea and contain the whole area of the optic disc. The exclusion criteria included: ①images 

identified with insufficient quality by the doctors; ②images annotated without consistent labels 

at the annotation stage.  

For the CFPs in the external test set, the original diagnosis was not limited considering the real 

clinical condition. Other inclusion and exclusion criteria remained the same. 
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2. The development and selection of the deep learning system. 

We first selected four state-of-the-art convolutional neural network (CNN) architectures as 

candidate multilabel classification models: Inception-V3, ResNet101, DenseNet121 and 

SeResNext50. They were all pretrained in ImageNet Datasets. To meet the joint requirement 

of abnormal versus normal classification and fine-grained recognition of multiple diseases, we 

modified the feature layer of the four CNNs to adapt to a certain situation. Two different 

branches were applied, with one branch for normal and abnormal classification and the other 

branch for diseases annotation (eFigure1). The binary classification models were trained with 

only one branch in the feature layer to predict disease or non-disease. The prediction of the 

late-fusion multilabel model is based on the average predictive value of 3 multilabel models. 

The detail of the cross entropy of the models, the postprocessing and conflict resolutions are 

available in the online materials. 

 

The input size of the images was 512x512. Through several convolution layers and blocks, we 

obtained a feature vector. The cross-entropy loss was applied for the first branch since 

predicting abnormalities from normal images is a binary classification problem. The definition 

of cross entropy loss is as follows: 

$%&&'()**+,-.()/0 = −[4 ∙ 6%748 + (1 − 4) ∙ 6%7(1 − 48)] 
y is the target label of an image, and 48 is the predicted score of the model. We utilized the 

multi-label loss function logits binary cross entropy for the second branch, and the definition of 

this loss is as follows: 

$%&&>?@ = −AB4C ∙ 6%7D(48C)
E

CFG
+B(1 − 4C) ∙ 6%7D(48C)

E

CFG
H 

N is the total number of disorders, yi and 48C are the target label and predict score of the model, 

respectively, and D(∙) is the sigmoid function to transform the predict score from infinity to 

(0.1). Then, we involved weights of the 2 branches as the hyperparameter to combine two 

losses together: 

 

Loss = IG ∗ $%&&'()**+,-.()/0 +IK ∗ $%&&>?@ 

w1 and w2 are the weights of the first and second branches, respectively. This reconstruction 

makes it possible to combine a binary classification system with multi-label recognition into a 

single network.  

 

The model was validated in the validation set for model selection and hyperparameter 

optimization, and was trained using the remaining images in the training set. We utilized 

stochastic gradient descent (SGD) optimizer to train the model with an initial learning rate of 

0.001, a momentum of 0.9, and a weight decay of 10−4. We used the initial learning rate to 

train 5 epoch. If the mean average precision in the validation doesn’t increase in two 

consecutives then the learning rate was halved. The Batch size was set to 10 and the following 

hyperparameters: w1=0.5 and w2=1. We obtained the model with the best mean average 

precision score in the validation set as the final model. 
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The sensitivity and specificity were calculated by the decision threshold, which was selected 

when the model obtained the optimal harmonic average of the two indexes in the validation set. 

Since the two branches of the task may provide conflict results like predicting “normal fundus” 

and “Possible GON” together if they both reach the threshold in two branches. To solve this 

kind of conflict, we designed a conversion method to unify the predictive values of the 12 

categories based on the probability. We divided [0.1] into 100 equal intervals and analyze the 

possibility distribution of positive images in each category. Then the predictive value of the 

testing image was introduced into the calculation to get a new predictive value. Considering 

the screening application scenarios, we set that the label of “normal fundus” would be provided 

as the predictive label only when the predictive value was the highest of all the predicted labels. 
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3. eTable1. The standard criteria of the 12 selected fundus diseases 

 

Diseases Standard diagnostic criteria 

Referable diabetic retinopathy ①The patients should have clear medical history of diabetes. ②The fundus images presented a diabetic retinopathy 

severity level of moderate nonproliferative diabetic retinopathy or worse, diabetic macular edema, and/or ungradable 

image1 

Retinal vein occlusion The fundus appearance presented with flame-shaped hemorrhage, dilation of the involved veins, cotton-wool spots, 

with or without papilledema 2 

Pathologic myopic retinal degeneration 

maculopathy 

①The myopic diopter should be over -6.0DS. ②The fundus images presented myopic maculopathy lesions in 

category 2-4 according to the META-PM (meta analyses of pathologic myopia) study classification4 

Retinitis pigmentosa  Fundus appearance with peripheral bone spicule pigmentations and thin retinal arteries5 

Retinal detachment  The elevation of the sensory retina presented as translucent membranoid structure with vessels on. This cartogory 

included three major types of RD: rhegmatogenous, tractional and exudative. 

Epiretinal membrane A thin glistening membrane over the macula with or without retinal wrinkling6 

Dry age-related macular degeneration Early, intermediate AMD7 and geographic atrophy  

Wet age-related macular degeneration Neovascular AMD which belongs to the late stage of AMD7 

Macular hole Stage 2-4 according to Gass’s classification8 of macular hole. 

Possible glaucomatous optic 

neuropathy  

With cup disc ratio greater than 0.7 with or without corresponding retinal fiber layer defect 

Papilledema Swollen and elevation of the optic disc, blurred disc range, with or without hemorrhage and retinal vein dilation9 

Optic nerve atrophy Pallor of the optic nerve9 
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4. eTable2. The four multilabel models' performance using different convolutional neural networks tested in the validation 

set 

  4.1 eTable2-1. The area under the curve (AUC) results 

�  

Area under the curve (AUC) values (95% confidence interval) 

SeResNext50 ResNet101 Inception-V3 DenseNet121 

Normal fundus 0.987 (0.983, 0.991) 0.984 (0.980, 0.988) 0.982 (0.978, 0.986) 0.987 (0.983, 0.991) 

Retinal vein occlusion 0.941 (0.933, 0.948) 0.939 (0.931, 0.947) 0.916 (0.907, 0.925) 0.946 (0.938, 0.953) 

Referable diabetic retinopathy 0.990 (0.987, 0.993) 0.991 (0.988, 0.994) 0.989 (0.986, 0.993) 0.988 (0.985, 0.992) 

Pathological myopic retinal degeneration 0.985 (0.981, 0.989) 0.985 (0.981, 0.989) 0.986 (0.982, 0.989) 0.989 (0.986, 0.993) 

Retinitis pigmentosa 0.996 (0.994, 0.998) 0.998 (0.996, 0.999) 0.989 (0.986, 0.993) 0.997 (0.995, 0.999) 

Retinal detachment 0.995 (0.993, 0.998) 0.991 (0.988, 0.994) 0.970 (0.965, 0.976) 0.995 (0.993, 0.997) 

Epiretinal membrane 0.960 (0.954, 0.967) 0.971 (0.965, 0.976) 0.950 (0.943, 0.957) 0.969 (0.964, 0.975) 

Dry age-related macular degeneration 0.966 (0.960, 0.972) 0.963 (0.957, 0.970) 0.937 (0.929, 0.945) 0.968 (0.963, 0.974) 

Wet age-related macular degeneration 0.950 (0.943, 0.957) 0.963 (0.957, 0.970) 0.925 (0.916, 0.934) 0.956 (0.950, 0.963) 

Macular hole 0.969 (0.963, 0.975) 0.958 (0.952, 0.965) 0.959 (0.953, 0.965) 0.967 (0.961, 0.973) 

Possible glaucomatous optic neuropathy 0.941 (0.934, 0.949) 0.950 (0.942, 0.957) 0.943 (0.935, 0.950) 0.948 (0.941, 0.955) 

Papilledema 0.971 (0.965, 0.976) 0.977 (0.972, 0.982) 0.981 (0.976, 0.985) 0.979 (0.974, 0.984) 

Optic nerve atrophy 0.985 (0.981, 0.989) 0.985 (0.981, 0.989) 0.986 (0.983, 0.990) 0.988 (0.984, 0.991) 
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4.2 eTable2-2. The average precision (AP) results 

�  

Average precision values (95% confidence interval) 

SeResNext50 ResNet101 Inception-V3 DenseNet121 

Normal fundus 0.961 (0.954, 0.967) 0.946 (0.939, 0.954) 0.938 (0.930, 0.946) 0.954 (0.947, 0.960) 

Retinal vein occlusion 0.747 (0.732, 0.761) 0.758 (0.744, 0.772) 0.695 (0.680, 0.710) 0.796 (0.783, 0.809) 

Referable diabetic retinopathy 0.962 (0.956, 0.968) 0.944 (0.937, 0.952) 0.935 (0.927, 0.943) 0.918 (0.909, 0.927) 

Pathological myopic retinal degeneration 0.887 (0.877, 0.898) 0.893 (0.883, 0.903) 0.874 (0.864, 0.885) 0.907 (0.897, 0.916) 

Retinitis pigmentosa 0.967 (0.961, 0.973) 0.967 (0.961, 0.972) 0.918 (0.909, 0.926) 0.969 (0.964, 0.975) 

Retinal detachment 0.954 (0.947, 0.961) 0.921 (0.912, 0.930) 0.880 (0.870, 0.891) 0.944 (0.937, 0.952) 

Epiretinal membrane 0.862 (0.850, 0.873) 0.873 (0.862, 0.884) 0.838 (0.826, 0.850) 0.880 (0.870, 0.891) 

Dry age-related macular degeneration 0.780 (0.767, 0.794) 0.723 (0.709, 0.738) 0.645 (0.629, 0.660) 0.756 (0.742, 0.770) 

Wet age-related macular degeneration 0.764 (0.750, 0.778) 0.798 (0.785, 0.811) 0.723 (0.709, 0.738) 0.777 (0.764, 0.791) 

Macular hole 0.842 (0.830, 0.854) 0.799 (0.786, 0.812) 0.784 (0.771, 0.798) 0.816 (0.803, 0.828) 

Possible glaucomatous optic neuropathy 0.710 (0.696, 0.725) 0.704 (0.689, 0.719) 0.662 (0.647, 0.677) 0.680 (0.665, 0.696) 

Papilledema 0.869 (0.858, 0.880) 0.889 (0.879, 0.899) 0.859 (0.847, 0.870) 0.896 (0.886, 0.905) 

Optic nerve atrophy 0.851 (0.839, 0.862) 0.854 (0.842, 0.865) 0.869 (0.858, 0.880) 0.868 (0.857, 0.879) 
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4.3 eTable2-3. The sensitivity results 

�  

Sensitivity values (95% confidence interval) 

SeResNext50 ResNet101 Inception-V3 DenseNet121 

Normal fundus 0.932 (0.924, 0.940) 0.933 (0.925, 0.941) 0.924 (0.915, 0.932) 0.943 (0.935, 0.951) 

Retinal vein occlusion 0.793 (0.780, 0.806) 0.761 (0.748, 0.775) 0.758 (0.744, 0.772) 0.811 (0.798, 0.823) 

Referable diabetic retinopathy 0.960 (0.954, 0.967) 0.964 (0.958, 0.970) 0.942 (0.934, 0.949) 0.947 (0.940, 0.955) 

Pathological myopic retinal degeneration 0.937 (0.930, 0.945) 0.953 (0.946, 0.960) 0.922 (0.913, 0.931) 0.953 (0.946, 0.960) 

Retinitis pigmentosa 0.954 (0.947, 0.961) 0.969 (0.964, 0.975) 0.954 (0.947, 0.961) 0.962 (0.955, 0.968) 

Retinal detachment 0.936 (0.928, 0.944) 0.918 (0.909, 0.927) 0.864 (0.852, 0.875) 0.927 (0.919, 0.936) 

Epiretinal membrane 0.862 (0.851, 0.873) 0.884 (0.874, 0.895) 0.869 (0.858, 0.880) 0.922 (0.913, 0.930) 

Dry age-related macular degeneration 0.861 (0.850, 0.873) 0.816 (0.804, 0.829) 0.764 (0.750, 0.778) 0.839 (0.827, 0.851) 

Wet age-related macular degeneration 0.863 (0.852, 0.874) 0.849 (0.838, 0.861) 0.842 (0.831, 0.854) 0.822 (0.809, 0.834) 

Macular hole 0.832 (0.820, 0.844) 0.745 (0.730, 0.759) 0.803 (0.790, 0.816) 0.788 (0.775, 0.802) 

Possible glaucomatous optic neuropathy 0.719 (0.704, 0.733) 0.793 (0.779, 0.806) 0.756 (0.742, 0.770) 0.793 (0.779, 0.806) 

Papilledema 0.886 (0.876, 0.896) 0.886 (0.876, 0.896) 0.890 (0.880, 0.901) 0.846 (0.835, 0.858) 

Optic nerve atrophy 0.911 (0.902, 0.920) 0.926 (0.917, 0.934) 0.876 (0.866, 0.887) 0.931 (0.922, 0.939) 
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4.4 eTable2-4. The specificity results 

�  

Specificity values (95% confidence interval) 

SeResNext50 ResNet101 Inception-V3 DenseNet121 

Normal fundus 0.977 (0.972, 0.982) 0.967 (0.961, 0.973) 0.965 (0.959, 0.971) 0.966 (0.960, 0.972) 

Retinal vein occlusion 0.889 (0.879, 0.900) 0.892 (0.882, 0.902) 0.877 (0.867, 0.888) 0.906 (0.897, 0.916) 

Referable diabetic retinopathy 0.951 (0.944, 0.958) 0.959 (0.953, 0.966) 0.963 (0.957, 0.969) 0.961 (0.954, 0.967) 

Pathological myopic retinal degeneration 0.976 (0.971, 0.981) 0.958 (0.952, 0.965) 0.969 (0.963, 0.975) 0.963 (0.957, 0.969) 

Retinitis pigmentosa 0.982 (0.978, 0.987) 0.981 (0.977, 0.986) 0.976 (0.971, 0.981) 0.985 (0.981, 0.989) 

Retinal detachment 0.990 (0.986, 0.993) 0.987 (0.984, 0.991) 0.988 (0.984, 0.991) 0.978 (0.973, 0.983) 

Epiretinal membrane 0.950 (0.943, 0.957) 0.940 (0.932, 0.948) 0.920 (0.911, 0.929) 0.935 (0.927, 0.943) 

Dry age-related macular degeneration 0.921 (0.912, 0.929) 0.934 (0.925, 0.942) 0.921 (0.913, 0.930) 0.911 (0.902, 0.920) 

Wet age-related macular degeneration 0.918 (0.909, 0.927) 0.942 (0.935, 0.950) 0.924 (0.915, 0.932) 0.951 (0.944, 0.958) 

Macular hole 0.962 (0.956, 0.968) 0.986 (0.982, 0.990) 0.969 (0.963, 0.974) 0.968 (0.963, 0.974) 

Possible glaucomatous optic neuropathy 0.940 (0.932, 0.947) 0.913 (0.904, 0.922) 0.919 (0.910, 0.928) 0.923 (0.915, 0.932) 

Papilledema 0.938 (0.930, 0.946) 0.949 (0.942, 0.956) 0.927 (0.918, 0.935) 0.955 (0.948, 0.962) 

Optic nerve atrophy 0.953 (0.946, 0.960) 0.959 (0.952, 0.965) 0.939 (0.931, 0.947) 0.948 (0.940, 0.955) 
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5. eTable3. The comparison of the selected multilabel model, binary classification models and the late-fusion multilabel 

model tested in the validation set 

  5.1 eTable3-1. The area under the curve (AUC) results 

�  

Area under the curve (AUC) values (95% confidence interval) 

Model A Model B Model C 

Normal fundus 0.987 (0.983, 0.991) 0.988 (0.983, 0.994) 0.989 (0.985, 0.992) 

Retinal vein occlusion 0.941 (0.933, 0.948) 0.957 (0.946, 0.969) 0.950 (0.942, 0.957) 

Referable diabetic retinopathy 0.990 (0.987, 0.993) 0.996 (0.993, 1.000) 0.994 (0.992, 0.997) 

Pathological myopic retinal degeneration 0.985 (0.981, 0.989) 0.989 (0.983, 0.995) 0.988 (0.984, 0.991) 

Retinitis pigmentosa 0.996 (0.994, 0.998) 0.992 (0.987, 0.997) 0.996 (0.994, 0.998) 

Retinal detachment 0.995 (0.993, 0.998) 0.998 (0.996, 1.000) 0.996 (0.993, 0.998) 

Epiretinal membrane 0.960 (0.954, 0.967) 0.974 (0.965, 0.983) 0.968 (0.963, 0.974) 

Dry age-related macular degeneration 0.966 (0.960, 0.972) 0.954 (0.942, 0.966) 0.976 (0.971, 0.981) 

Wet age-related macular degeneration 0.950 (0.943, 0.957) 0.984 (0.978, 0.991) 0.964 (0.958, 0.970) 

Macular hole 0.969 (0.963, 0.975) 0.963 (0.952, 0.973) 0.978 (0.973, 0.983) 

Possible glaucomatous optic neuropathy 0.941 (0.934, 0.949) 0.959 (0.948, 0.970) 0.953 (0.946, 0.960) 

Papilledema 0.971 (0.965, 0.976) 0.962 (0.951, 0.973) 0.980 (0.975, 0.985) 

Optic nerve atrophy 0.985 (0.981, 0.989) 0.978 (0.970, 0.986) 0.989 (0.985, 0.992) 

Model A=the multilabel model; Model B=the combination of binary classification models; Model C=the late fusion model 
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5.2 eTable3-2. The average precision (AP) results 

�  

Average precision (AP) value (95% confidence interval) 

Model A Model B Model C 

Normal fundus 0.961 (0.954, 0.967) 0.975 (0.966, 0.984) 0.969 (0.964, 0.975) 

Retinal vein occlusion 0.747 (0.732, 0.761) 0.775 (0.752, 0.799) 0.809 (0.797, 0.822) 

Referable diabetic retinopathy 0.962 (0.956, 0.968) 0.984 (0.977, 0.991) 0.966 (0.960, 0.972) 

Pathological myopic retinal degeneration 0.887 (0.877, 0.898) 0.889 (0.871, 0.906) 0.895 (0.885, 0.905) 

Retinitis pigmentosa 0.967 (0.961, 0.973) 0.970 (0.961, 0.980) 0.971 (0.965, 0.976) 

Retinal detachment 0.954 (0.947, 0.961) 0.968 (0.958, 0.977) 0.965 (0.959, 0.971) 

Epiretinal membrane 0.862 (0.850, 0.873) 0.822 (0.801, 0.844) 0.884 (0.874, 0.895) 

Dry age-related macular degeneration 0.780 (0.767, 0.794) 0.753 (0.729, 0.777) 0.811 (0.798, 0.824) 

Wet age-related macular degeneration 0.764 (0.750, 0.778) 0.815 (0.794, 0.837) 0.810 (0.797, 0.823) 

Macular hole 0.842 (0.830, 0.854) 0.806 (0.784, 0.828) 0.871 (0.860, 0.882) 

Possible glaucomatous optic neuropathy 0.710 (0.696, 0.725) 0.714 (0.689, 0.739) 0.742 (0.728, 0.756) 

Papilledema 0.869 (0.858, 0.880) 0.851 (0.832, 0.871) 0.901 (0.892, 0.911) 

Optic nerve atrophy 0.851 (0.839, 0.862) 0.819 (0.797, 0.840) 0.873 (0.862, 0.884) 

Model A=the multilabel model; Model B=the combination of binary classification models; Model C=the late fusion model 

 

   

  

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance
Supplemental material placed on this supplemental material which has been supplied by the author(s) Br J Ophthalmol

 doi: 10.1136/bjophthalmol-2020-316290–8.:10 2021;Br J Ophthalmol, et al. Li B



�  ��

5.3 eTable3-3. The sensitivity results 

�  

Sensitivity Value (95% confidence interval) 

Model A Model B Model C 

Normal fundus 0.932 (0.924, 0.940) 0.964 (0.954, 0.974) 0.945 (0.938, 0.953) 

Retinal vein occlusion 0.793 (0.780, 0.806) 0.822 (0.801, 0.843) 0.804 (0.791, 0.816) 

Referable diabetic retinopathy 0.960 (0.954, 0.967) 0.974 (0.965, 0.983) 0.964 (0.958, 0.970) 

Pathological myopic retinal degeneration 0.937 (0.930, 0.945) 0.949 (0.936, 0.961) 0.958 (0.952, 0.965) 

Retinitis pigmentosa 0.954 (0.947, 0.961) 0.976 (0.967, 0.984) 0.962 (0.955, 0.968) 

Retinal detachment 0.936 (0.928, 0.944) 0.956 (0.945, 0.967) 0.973 (0.967, 0.978) 

Epiretinal membrane 0.862 (0.851, 0.873) 0.869 (0.850, 0.888) 0.918 (0.909, 0.927) 

Dry age-related macular degeneration 0.861 (0.850, 0.873) 0.825 (0.804, 0.846) 0.858 (0.846, 0.869) 

Wet age-related macular degeneration 0.863 (0.852, 0.874) 0.917 (0.901, 0.932) 0.842 (0.831, 0.854) 

Macular hole 0.832 (0.820, 0.844) 0.783 (0.760, 0.806) 0.876 (0.865, 0.887) 

Possible glaucomatous optic neuropathy 0.719 (0.704, 0.733) 0.720 (0.695, 0.745) 0.804 (0.791, 0.817) 

Papilledema 0.886 (0.876, 0.896) 0.818 (0.797, 0.840) 0.904 (0.894, 0.913) 

Optic nerve atrophy 0.911 (0.902, 0.920) 0.876 (0.858, 0.894) 0.950 (0.943, 0.958) 

Model A=the multilabel model; Model B=the combination of binary classification models; Model C=the late fusion model 
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5.4 eTable3-4. The specificity results 

�  

Specificity value (95% confidence interval) 

Model A Model B Model C 

Normal fundus 0.977 (0.972, 0.982) 0.941 (0.928, 0.954) 0.967 (0.961, 0.973) 

Retinal vein occlusion 0.889 (0.879, 0.900) 0.856 (0.837, 0.876) 0.897 (0.888, 0.907) 

Referable diabetic retinopathy 0.951 (0.944, 0.958) 0.967 (0.958, 0.977) 0.969 (0.963, 0.974) 

Pathological myopic retinal degeneration 0.976 (0.971, 0.981) 0.964 (0.953, 0.974) 0.971 (0.965, 0.976) 

Retinitis pigmentosa 0.982 (0.978, 0.987) 0.973 (0.963, 0.982) 0.978 (0.973, 0.983) 

Retinal detachment 0.990 (0.986, 0.993) 0.991 (0.986, 0.996) 0.981 (0.977, 0.986) 

Epiretinal membrane 0.950 (0.943, 0.957) 0.945 (0.932, 0.957) 0.923 (0.915, 0.932) 

Dry age-related macular degeneration 0.921 (0.912, 0.929) 0.905 (0.888, 0.921) 0.939 (0.931, 0.947) 

Wet age-related macular degeneration 0.918 (0.909, 0.927) 0.938 (0.925, 0.951) 0.953 (0.946, 0.960) 

Macular hole 0.962 (0.956, 0.968) 0.982 (0.974, 0.989) 0.963 (0.957, 0.970) 

Possible glaucomatous optic neuropathy 0.940 (0.932, 0.947) 0.927 (0.912, 0.941) 0.934 (0.925, 0.942) 

Papilledema 0.938 (0.930, 0.946) 0.961 (0.950, 0.971) 0.950 (0.943, 0.957) 

Optic nerve atrophy 0.977 (0.972, 0.982) 0.941 (0.928, 0.954) 0.967 (0.961, 0.973) 

Model A=the multilabel model; Model B=the combination of binary classification models; Model C=the late fusion model 
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6. eTable 4. The threshold point and the corresponding results of the model tested in the validation set. 

 

�  

Validation set 

Sensitivity Specificity AP AUC 

Normal fundus 0.891 (0.885, 0.897) 0.913 (0.907, 0.918) 0.936 (0.932, 0.941) 0.960 (0.956, 0.964) 

Referable diabetic retinopathy 0.688 (0.680, 0.697) 0.923 (0.918, 0.928) 0.651 (0.642, 0.660) 0.904 (0.899, 0.910) 

Retinal vein occlusion 0.965 (0.961, 0.968) 0.979 (0.976, 0.981) 0.963 (0.959, 0.967) 0.993 (0.992, 0.995) 

Pathological myopic retinal degeneration 0.941 (0.937, 0.946) 0.973 (0.970, 0.976) 0.948 (0.944, 0.952) 0.987 (0.984, 0.989) 

Retinitis pigmentosa 0.949 (0.945, 0.953) 0.986 (0.984, 0.988) 0.914 (0.909, 0.919) 0.992 (0.990, 0.993) 

Retinal detachment 0.898 (0.892, 0.904) 0.989 (0.987, 0.991) 0.861 (0.854, 0.867) 0.985 (0.983, 0.988) 

Epiretinal membrane 0.862 (0.855, 0.869) 0.943 (0.939, 0.948) 0.838 (0.830, 0.845) 0.975 (0.972, 0.978) 

Dry age-related macular degeneration 0.752 (0.744, 0.761) 0.919 (0.914, 0.925) 0.612 (0.603, 0.621) 0.932 (0.927, 0.936) 

Wet age-related macular degeneration 0.894 (0.888, 0.900) 0.948 (0.944, 0.952) 0.750 (0.742, 0.759) 0.975 (0.972, 0.978) 

Macular hole 0.593 (0.584, 0.603) 0.979 (0.976, 0.982) 0.401 (0.392, 0.411) 0.920 (0.914, 0.925) 

Possible glaucomatous optic neuropathy 0.664 (0.654, 0.673) 0.892 (0.886, 0.898) 0.413 (0.404, 0.423) 0.912 (0.907, 0.918) 

Papilledema 0.818 (0.811, 0.826) 0.969 (0.965, 0.972) 0.862 (0.855, 0.869) 0.978 (0.975, 0.981) 

Optic nerve atrophy 0.803 (0.795, 0.811) 0.939 (0.934, 0.944) 0.662 (0.653, 0.671) 0.972 (0.969, 0.975) 
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7. eTable5 Comparing our DLS with the state-of-art for glaucoma detection on the REFUGE challenge dataset. Performance scores 

of the individual teams are cited from the REFUGE challenge paper  

 

Rank Team AUC Reference 

sensitivity 

1 VRT  0.9885 0.9752 

2 SDSAIRC  0.9817 0.9760 

3 CUHKMED  0.9644 0.9500 

4 NKSG  0.9587 0.8917 

5 Mammoth  0.9555 0.8918 

6 Our DLS 0.9546 0.9305 

7 Masker  0.9524 0.8500 

8 SMILEDeepDR  0.9508 0.8750 

9 BUCT  0.9348 0.8500 

10 WinterFell  0.9327 0.9250 

11 NightOwl  0.9101 0.9000 

12 Cvblab  0.8806 0.7318 

13 AIML  0.8458 0.7250 

Ground truth  vCDR 0.9471 0.8750 
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8 eTable6 The comparison between human doctors and the DLS model in the validation set. 

8.1 eTable6-1 The diagnostic sensitivity and specificity of ophthalmic resident 1 and the DLS model in the subset of the external test 

set B. 

�  No Sensitivity  Specificity 

Doctor DLS model Doctor DLS model 

Normal fundus 647 0.958 0.923 0.827 0.957 

Retinal vein occlusion 39 0.769 0.949 0.994 0.958 

Referable diabetic retinopathy 21 0.810 1.000 0.996 0.990 

Pathological myopic retinal degeneration 16 0.500 1.000 0.996 0.982 

Retinitis pigmentosa 15 0.467 0.867 0.999 0.994 

Retinal detachment 2 1.000 1.000 1.000 0.992 

Epiretinal membrane 21 0.762 0.857 0.982 0.971 

Dry age-related macular degeneration 25 0.560 0.800 0.993 0.977 

Wet age-related macular degeneration 15 0.867 1.000 0.999 0.994 

Macular hole 4 0.750 1.000 1.000 0.981 

Possible glaucomatous optic neuropathy 44 0.568 0.909 0.981 0.969 

Papilledema 10 0.800 0.800 0.993 0.982 

Optic nerve atrophy 13 0.231 0.615 0.995 0.948 

Mean      

Mann-Whitney U test  P=0.005 P=0.003 
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8.2 eTable6-2 The diagnostic sensitivity and specificity of ophthalmic resident 2 and the DLS model in the subset of the external test 

set B. 

 

�  No Sensitivity  Specificity 

Doctor DLS model Doctor DLS model 

Normal fundus 340 0.876 0.844 0.877 0.850 

Retinal vein occlusion 110 0.745 0.927 0.980 0.851 

Referable diabetic retinopathy 28 0.857 1.000 0.994 0.976 

Pathological myopic retinal degeneration 34 0.735 1.000 0.997 0.910 

Retinitis pigmentosa 5 0.800 1.000 1.000 0.961 

Retinal detachment 6 0.833 0.833 1.000 0.980 

Epiretinal membrane 45 0.533 0.711 0.978 0.855 

Dry age-related macular degeneration 145 0.641 0.697 0.973 0.932 

Wet age-related macular degeneration 23 0.652 0.957 0.991 0.960 

Macular hole 2 1.000 1.000 0.999 0.945 

Possible glaucomatous optic neuropathy 78 0.744 0.846 0.958 0.914 

Papilledema 27 0.704 0.778 0.979 0.967 

Optic nerve atrophy 43 0.721 0.698 0.986 0.936 

Mean      

Mann-Whitney U test  P=0.057 P 0.001 
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8.3 eTable6-3 The diagnostic sensitivity and specificity of ophthalmic resident 3 and the DLS model in the subset of the external test 

set B. 

 

�  No Sensitivity  Specificity 

Doctor DLS model Doctor DLS model 

Normal fundus 382 0.809 0.846 0.905 0.880 

Retinal vein occlusion 113 0.681 0.885 0.990 0.847 

Referable diabetic retinopathy 37 0.865 1.000 0.995 0.991 

Pathological myopic retinal degeneration 36 0.861 1.000 0.984 0.927 

Retinitis pigmentosa 2 0.500 1.000 0.995 0.974 

Retinal detachment 3 1.000 0.667 1.000 0.992 

Epiretinal membrane 55 0.636 0.764 0.967 0.861 

Dry age-related macular degeneration 137 0.613 0.745 0.972 0.934 

Wet age-related macular degeneration 21 0.667 0.810 0.993 0.970 

Macular hole 3 1.000 1.000 0.995 0.962 

Possible glaucomatous optic neuropathy 57 0.702 0.737 0.947 0.911 

Papilledema 19 0.737 0.789 0.988 0.981 

Optic nerve atrophy 56 0.554 0.679 0.989 0.956 

Mean      

Mann-Whitney U test  P=0.091 P=0.009 
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8.4 eTable6-4 The diagnostic sensitivity and specificity of ophthalmic resident 4 and the DLS model in the subset of the external test 

set B. 

 

�  No Sensitivity  Specificity 

Doctor DLS model Doctor DLS model 

Normal fundus 435 0.860 0.871 0.883 0.851 

Retinal vein occlusion 126 0.754 0.944 0.969 0.858 

Referable diabetic retinopathy 37 0.568 1.000 0.999 0.985 

Pathological myopic retinal degeneration 27 0.778 0.963 0.991 0.933 

Retinitis pigmentosa 16 0.500 0.875 0.998 0.979 

Retinal detachment 3 0.667 0.667 0.999 0.986 

Epiretinal membrane 44 0.659 0.705 0.971 0.866 

Dry age-related macular degeneration 97 0.588 0.691 0.975 0.918 

Wet age-related macular degeneration 16 0.875 0.937 0.987 0.961 

Macular hole 5 1.000 1.000 1.000 0.974 

Possible glaucomatous optic neuropathy 48 0.604 0.687 0.955 0.925 

Papilledema 26 0.654 0.692 0.989 0.971 

Optic nerve atrophy 38 0.737 0.684 0.973 0.967 

Mean  0.711 0.824 0.976 0.936 

Mann-Whitney U test  P 0.001 P=0.007 
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9.2 eFigure2. The receiver operating characteristic (ROC) curves of the four-candidate convolutional neural networks (CNNs) tested in the internal testn set. Among all CNNs, SeResNext50 showed slightly better 

performance than others with the mean average precision reached 0.878.  
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9.3 eFigure3 The receiver operating characteristic (ROC) curves of the single multilabel model, combination of the 13 binary classification models and the late-fusion multilabel model. The multilabel model showed 

comparable performance with the binary classification models. The late-fusion model presented more stable performance than the single multilabel model. It also showed the best performance with the mean average 

precision reached 0.889 in the validation set.  
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9.4 eFigure4. The ROC curved of the selected DLS tested on the internal test set A. 
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9.5 eFigure5. The ROC curved of the selected DLS tested on the internal test set B. 
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9.6 eFigure6 The receiver operating characteristic (ROC) curves and the results of the DLS and the diagnostic sensitivity and specificity of the four participate four ophthalmic residents.   
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